Кобальтовая бомба

Запреты на применение кассетных бомб

Такие неразорвавшиеся боеприпасы повсеместно находят после использования кассетных бомб

Ввиду низкой точности и тяжелых последствий взрыва, кассетные бомбы признаны негуманным оружием. Первая конвенция, запрещающая применение игольчатых и шариковых боеприпасов была принята в 1980 году.

Ситуация осложнилась после того, как в конструкции поражающих снарядов и корпуса стали применять пластик. Такие элементы не обнаруживаются металлоискателем и рентгеном, что усложняет разминирование пораженных участков и снарядов.

В 2008 году в Дублине был принят «Договор о полном запрете кассетных боеприпасов». Соглашение подразумевает отказ от такого вооружения из-за его негуманного способа действия. 3 декабря того же года документ подписали 93 государства, позднее их количество увеличилось до 108. Договор вступил в силу 1 августа 2010.

Предназначение торпеды

Статус-6 на испытаниях

Оценивая перспективы использования этого оружия, эксперты выделяют несколько основных направлений. На данный момент основным источником разрушений считается ядерный заряд, отсюда вытекают цели использования изделия:

  • Подход к стратегически важным точкам и объектам в прибрежной зоне, где детонация вызовет серьезные разрушения и прекращение функционирования структур;
  • Дополнительными негативными факторами станет не только сам взрыв, но и его последствия, в частности, загрязнение ядерными отходами зоны поражения, образованные цунами;
  • Предполагается, что торпеда сможет бороться с АПЛ Соединенных Штатов, причем уничтожать их непосредственно на базах и вместе с этими базами;
  • Возможно, торпеда сможет уничтожать целые авианесущие группы, так как ее оснащение подразумевает борьбу с подвижными плавсредствами.

Один из предполагаемых вариантов – установка на борту кобальтовой бомбы. Мощность потенциального заряда оценивается в 100 мегатонн.

Статус-6, конструкция

Проект расценивается как серьезный фактор сдерживания Соединенных Штатов. Некоторые эксперты заявляют, что создание такого средства, способного уничтожить целый город в прибрежной зоне, является еще большим риском для государства, чем отсутствие ПРО США в их современном положении.

В то же время торпеда не считается средством нападения, так как на достижение берегов потенциального врага требуется несколько дней. Торпедная ракета – это лишь средство нанесения ответного удара.

История создания ядерной бомбы

Макеты бомб «Малыш» и «Толстяк», сброшенных на японские города

Вопрос о том, кто изобрел ядерную бомбу, в истории не имеет однозначного ответа. Предпосылкой для работы над атомным оружием принято считать открытие радиоактивности урана. В 1896 году французский химик А. Беккерель открыл цепную реакцию данного элемента, положив начало разработкам в ядерной физике.

В следующее десятилетие были открыты альфа-, бета- и гамма-лучи, а также ряд радиоактивных изотопов некоторых химических элементов. Последовавшее открытие закона радиоактивного распада атома стало началом для изучения ядерной изометрии.

Однако немецкая ядерная программа была обречена на провал. Несмотря на успешное продвижение ученых, страна ввиду войны постоянно испытывала трудности с ресурсами, особенно с поставками тяжелой воды. На поздних этапах, исследования замедлялись постоянными эвакуациями. 23 апреля 1945 разработки немецких ученых были захвачены в Хайгерлохе и вывезены в США.

США стали первой страной, выразившей заинтересованность в новом изобретении. В 1941 году на его разработку и создание были выделены значительные средства. Первые испытания прошли 16 июля 1945 года. Меньше, чем через месяц, США впервые применили ядерное оружие, сбросив две бомбы на Хиросиму и Нагасаки.

Собственные исследования в области ядерной физики в СССР велись с 1918 года. Комиссия по атомному ядру была создана в 1938 году при Академии наук. Однако с началом войны ее деятельность в данном направлении была приостановлена.

В 1943 году сведения о научных трудах в ядерной физике были получены советскими разведчиками из Англии. Были внедрены агенты в несколько исследовательских центров США. Добываемые ими сведения позволили ускорить разработку собственного ядерного оружия.

Позже дата была перенесена на начало 1957 с учетом того, чтобы все страны НАТО могли подготовиться и включиться в войну. По данным западной разведки, испытание ядерного оружия в СССР могло быть проведено не раньше 1954 года.

Однако о подготовке США к войне стало известно заранее, что заставило советских ученых ускорить исследования. В короткие сроки они изобретают и создают собственную ядерную бомбу. 29 августа 1949 г. в Семипалатинске на полигоне испытана первая советская атомная бомба РДС-1 (реактивный двигатель специальный).

Подобные испытания сорвали план «Троян». С этого момента США перестали обладать монополией на ядерное оружие. Вне зависимости от силы упреждающего удара, оставался риск ответных действий, что грозило катастрофой. С этого момента самое страшное оружие стало гарантом мира между великими державами.

Кобальт-60, обнаруженный на полигонах

Каких-либо достоверных сведений или проверенной информации на сегодняшний день о том, что в какой-то стране создана и имеется кобальтовая осколочная бомба, нет. По официальным сведениям, такого факта не зарегистрировано. Однако при различных ядерных испытаниях кобальт-60 все же использовался в разных странах. Так, 14 сентября 1957 года малые количества этого элемента были применены британскими военными при проводимых ими испытаниях. Он был использован в качестве радиохимических меток. Следует отметить, что рассматриваемый химический элемент является обыкновенным последствием ядерных взрывов, причем не имеет значения форма их осуществления, он образуется как при открытых, так и закрытых испытательных подрывах. Кобальт-60 появляется при таких взрывах в итоге нейтронной активации железа. Но в этом процессе участвует не только железо, но и природный кобальт, и никель. Взаимодействие происходит с железом, содержащимся как в самой бомбе (стальной оболочке), так и с железом, находящимся в земле (в любом грунте имеется определенный процент этого элемента).

Например, рассматриваемый радиоактивный изотоп был выявлен на территориях, где производились наземные и подземные ядерные испытания, а именно промышленные военные подрывы. К таким относятся произведенные советские испытания на Семипалатинском ядерном полигоне, расположенном в Республике Казахстан, а также взрывы «Тайга», «Чаган», «Кристал», «Кратон-3». Из зарубежных полигонов нужно отметить североамериканский полигон Аламогордо, на котором был произведен первый взрыв такой классификации, названный «Тринити». Также обнаруживался кобальт-60 и на французском испытательном полигоне, который находился в Алжире.

История

Идея кобальтовой бомбы была описана в феврале 1950 года физиком Лео Силардом, который предположил, что арсенал кобальтовых бомб будет способен уничтожить всё человечество на планете (так называемая Машина Судного дня, англ. Doomsday device, DDD). Кобальт был выбран как элемент, дающий в результате нейтронной активации высокоактивное и при этом относительно длительное радиоактивное заражение. При использовании других элементов можно получить заражение изотопами с большим периодом полураспада, но их активность будет недостаточной. Также существуют более короткоживущие изотопы, чем кобальт-60, например золото-198, цинк-65, натрий-24, но из-за их быстрого распада часть популяции может выжить в бункерах.

Придуманная Силардом «Машина Судного дня» — термоядерное взрывное устройство, способное наработать кобальт-60 в количестве, достаточном для уничтожения всего человечества, — не предполагает каких-либо средств доставки. Государство (или террористическая организация) может использовать её как инструмент шантажа, угрожая взорвать Машину Судного дня на своей территории и тем самым уничтожить как своё население, так и всё остальное человечество. После взрыва радиоактивный кобальт-60 будет разнесён по всей планете атмосферными течениями за несколько месяцев.

10 ноября 2000 года в российской прессе появлялась информация со ссылкой на интервью генерал-полковника Е. А. Негина зарубежным журналистам о том, что группа академика А. Д. Сахарова якобы предлагала Н. С. Хрущёву сделать корабль с кобальтовой обшивкой, содержащий большое количество дейтерия рядом с ядерной бомбой. При подрыве у восточного побережья Америки радиоактивные осадки выпали бы на территории США.

Что такие крылатая ракета и какими они бывают

Крылатая ракета – это беспилотный летательный аппарат одноразового применения с аэродинамическими несущими поверхностями (крылом), двигателем и автономной системой наведения. Устаревшее название этого ЛА – самолет-снаряд.

Современные крылатые ракеты – весьма многочисленный и разнообразный класс ударных летательных аппаратов. В зависимости от дальности полета КР бывают.

  • тактические (до 150 км);
  • оперативно-тактические (от 150 до 1500 км);
  • стратегические (от 1500 км).

По скорости полета крылатые ракеты делятся на:

  • дозвуковые;
  • сверхзвуковые.
  • гиперзвуковые.

По типу базирования различают следующие виды КР:

  • наземные;
  • авиационные;
  • корабельные.

Осколочные боеприпасы — принцип действия и виды

Военные, усмотрев в действии отдельных боеприпасов определенные факторы, натолкнули военных инженеров на мысль, снабдить обычный боеприпас, артиллерийский снаряд или ручную бомбу, дополнительными элементами. При разрыве снаряда эти элементы, получив огромный импульс кинетической энергии, разлетались от места взрыва на определенное расстояние. Другими словами, к фугасности, которая является обычным явлением для любого взрывчатого вещества, добавился другой поражающий компонент, фактор осколочного действия. Соответственно увеличилась зона поражения такого боезаряда. Выше уже было сказано, что первыми видами боеприпасов осколочного действия была шрапнель, снаряд, начиненный пулями, которые разлетались в момент взрыва.

Шрапнель

В дальнейшем осколочные боеприпасы (ОБП) получили большее распространение ввиду большого разнообразия конструкций. Это и стало одной из причин массового перехода практически всех видов вооружений, где используются взрывчатые вещества на осколочные и осколочно-фугасные боеприпасы. В зависимости от принципа действия и конструкции осколочных боеприпасов изменился их способ доставки, значительно расширился круг боевых задач. Несмотря на то, что этот вид боеприпасов официально не имеет классификации, их принято разделять по следующим критериям:

  • по способу доставки к цели;
  • по типу и размерам поражаемой цели;
  • по форме и конфигурации осколочного поля;
  • по поражающим элементам (форма и способ формирования).

Осколочные гранаты

Отличатся этот вид боеприпасов и по типу поражаемой цели. На данный момент в боевых условиях основным средством противодействия являются многоцелевые боеприпасы, осколочно-фугасного действия. Это, как правило, артиллерийские гаубичные снаряды, минометные мины, авиационные бомбы. Специализированные боеприпасы используются для борьбы с целями определенного плана. К таким боеприпасам относятся:

  • противопехотные мины;
  • противотранспортные мины;
  • кассетные авиабомбы;
  • ручные гранаты различного действия.

Гаубичные снаряды, минометные мины и авиационные мины рассчитаны главным образом на поражение живой силы. Во время взрыва такого боеприпаса в большом количестве образуются осколки, крупные и мелкие, разлетающиеся на значительное расстояние. При взрыве единичного заряда осколочного действия зона поражения может варьироваться в диапазоне 150-300 м. Применение шариковых или кассетных снарядов за счет использования многочисленных зарядов, зона поражения увеличивается в несколько раз, достигая площади в 1-2 га.

Кассетная бомба

Радиоактивная пыль

Радиологическому оружию, как еще называют «грязные бомбы», вовсе не обязательно быть собственно бомбой. В рассказе Хайнлайна, например, русские (создавшие подобное оружие практически одновременно с американцами) рассеивали радиоактивную пыль над американскими городами прямо с самолетов, как инсектицид на поля (кстати, еще одно меткое предвиденье автора: задолго до начала холодной войны он предугадал, что именно СССР станет основным соперником Соединенных Штатов в области сверхоружия). Даже выполненное в форме бомбы, подобное оружие не наносит существенных материальных разрушений — небольшой заряд взрывчатого вещества используется для того, чтобы рассеять в воздухе радиоактивную пыль.

При ядерном взрыве образуется значительное количество разнообразных неустойчивых изотопов, помимо того, происходит заражение наведенной радиоактивностью, возникающей вследствие нейтронного ионизирующего облучения почвы и объектов. Однако уровень радиации после ядерного взрыва относительно быстро падает, поэтому самый опасный период можно переждать в бомбоубежище, а зараженная территория спустя несколько лет становится пригодна для использования в хозяйственных целях и для проживания. Так, например, Хиросима, пострадавшая от урановой бомбы, и Нагасаки, где была взорвана бомба из плутония, начали отстраиваться заново через четыре года после взрывов.

Совсем иначе бывает, когда взрывается достаточно мощная «грязная бомба», специально предназначенная для максимального загрязнения территории и превращения ее в подобие Чернобыльской зоны отчуждения. Различные радиоактивные изотопы имеют разный период полураспада — от микросекунд до миллиардов лет. Наиболее неприятны из них те, полураспад которых происходит за годы — время, существенное относительно продолжительности человеческой жизни: их не пересидишь в бомбоубежище, при достаточном загрязнении ими местность остается радиоактивно опасной на протяжении нескольких десятилетий, и поколения успеют смениться несколько раз, прежде чем в разрушенном городе (или на другой территории) снова можно будет работать и жить.

К числу самых опасных для человека изотопов относятся стронций-90 и стронций-89, цезий-137, цинк-64, тантал-181. Следует иметь в виду, что разные изотопы по-разному влияют на организм. Например, йод-131, хоть и имеет относительно короткий период полураспада в восемь дней, представляет серьезную опасность, так как быстро накапливается в щитовидной железе. Радиоактивный стронций накапливается в костях, цезий — в мышечных тканях, углерод распределяется по всему организму.

Единицы измерения поглощенной организмом радиации — зиверт (Зв) и устаревший, но еще встречающийся в публикациях бэр («биологический эквивалент рентгена», 1 бэр = 0,01 Зв). Нормальная доза радиоактивного облучения, получаемая человеком от природных источников в течение года, составляет 0,0035−0,005 Зв. Облучение в 1Зв — это нижний порог развития лучевой болезни: существенно слабеет иммунитет, ухудшается самочувствие, возможны кровотечения, выпадение волос и возникновение мужского бесплодия. При дозе в 3−5 Зв без серьезной медицинской помощи половина пострадавших умирает в течение 1−2 месяцев, у выживших так или иначе высока вероятность развития раковых заболеваний. При 6−10 Зв у человека практически полностью отмирает костный мозг, без полной его пересадки вероятности выжить нет, смерть наступает через 1- 4 недели. Если человек получил более 10 Зв, спасти его невозможно.

Кроме соматических (то есть возникающих непосредственно у облученного человека) последствий имеют место еще и генетические — проявляющиеся у его потомства. Следует иметь в виду, что уже при относительно небольшой дозе радиоактивного облучения в 0,1 Зв вероятность генных мутаций удваивается.

ЗиЛ-135МШ

Модификация специального назначения, не увидевшая серийного производства. Появилась в результате работы над крупным космическим проектом. Советские специалисты создали космический аппарат Н-1. Большой проблемой стала его транспортировка из Самары до космодрома Байконур. Комплекс Н-1 делился на несколько блоков, масса каждого из которых составляла не менее 10 тысяч килограмм. Оптимальным вариантом перевозки в те годы считалась железная дорога, но правила перевозки грузов требовали разделения Н-1 на более мелкие части, что не устроило инженеров проекта.

Опытный образец автомобиля собрали в 1967 году. Он получил уникальную конструкцию. Колёсная формула определялась как 4х4+2х2, чего прежде в истории автомобилестроения не видели. Пара передних колёс получила стойки с пневмогидравлическими амортизаторами, которые использовались на некоторых самолётах. Это позволяло менять высоту подвески в процессе движения.

Минимальный дорожный просвет — 1 метр. Каждое переднее колесо получило электродвигатель, установленный в ступицу. Мотор ЗиЛ-375 имел объём 7 литров и развивал до 180 лошадиных сил. Транспорт мог разгоняться до 20 километров в час, что превосходило показатели аналогичных вариантов того времени. Рулевой механизм позволял поворачивать передние колёса на 90 градусов. Это определяло высокую манёвренность машины таких габаритов. Для изготовления кабины использовали стеклопластик, её вынесли за пределы колёсной базы вперёд.

После окончания необходимых испытаний руководство проекта МШ перешло к другому человеку, который принял решение о прекращении работ. Он считал, что транспортировка Н-1 по пустынной местности опасна. Поэтому для транспортировки выбрали более дорогостоящие и неудобные варианты. Машину отложили в долгий ящик, информация о ней появилась в 1976 году в рамках проекта платформы с гидравлическими подвесками опор французской компании «Николя».

Могут ли мины не взрываться после сбрасывания?

Помимо того, что кассетная бомба обладает мощной взрывной силой, она таит в себе и определенную скрытую угрозу. В данном случае речь идет о том, что по определенным причинам (в частности, из-за несовершенного механизма взрывателя) мины, выпущенные из оболочки бомбы, не взрываются. Особенно это относится к самым первым партиям суббоеприпасов.

В настоящее время менее 5% новых авиабомб не срабатывают и падают на землю, фактически превращаясь в противопехотные мины. Притом после погружения в грунт эти снаряды могли долгое время сохранять свои детонационные качества и взрываться после соприкосновения со сторонними объектами.

Для устранения данной проблемы, к примеру, американские военные раскрашивали мины, находящиеся внутри авиабомбы, в разные яркие цвета. Предполагалось, что в случае если кассетная бомба вдруг не сработает, ее неразорвавшиеся элементы с легкостью найдут саперы по цвету. Однако и этот вариант не был идеальным, так как под угрозой находились дети

Напомним, что часто внимание ребенка привлекают яркие и красивые предметы

Позднее применение кассетных бомб было тщательно проверено и доработано. Так, появилась авиабомба CBU-105, весящая 420 кг и содержащая до 40 мин Blu 108/B. При этом каждый снаряд, находящийся внутри бомбы, содержал систему корректировки полета, а также был запрограммирован в случае неудачи на самоликвидацию.

Ключевые факторы эффективности боевых ОБП

От типа боеприпаса зависит конфигурация осколочных полей. Этот фактор является определяющим боевое применение снарядов, мин, бомб и гранат. Эффективность перечисленных боеприпасов в различных ситуациях. Конфигурация осколочных полей может быть четырех типов:

  • круговая;
  • несимметрично радиально направленная;
  • осевая;
  • низкоскоростная, плоская.

Самый последний четвертый тип характерен для боевых частей ракет и снарядов противовоздушной обороны. Такие боеприпасы рассчитаны для поражения воздушных целей на всех горизонтах полета. Самые распространенные осколочные боеприпасы с круговой конфигурацией – это минометные мины, авиабомбы и ручные осколочные гранаты. Именно их использование рассчитано главным образом на круговое, массированное поражение живой силы противника на больших площадях.

Действие осколочно-фугасных снарядов

На эффективность ОБП оказывает влияние способ формирования поражающих элементов. В современных боеприпасах применяется три способа формирования осколков:

  • при естественном дроблении оболочки снаряда;
  • при заданном дроблении оболочки снаряда;
  • снаряды, оснащенные готовыми поражающими элементами.

Первый способ наиболее распространенный. Практически все осколочные мины, авиационные бомбы и артиллерийские снаряды имеют поражающие элементы, возникающие естественным, неконтролируемым способом путем дробления на мелкие и крупные частицы оболочки боеприпаса. Как правило, оболочка боеприпасов имеет асимметричный корпус, изготовленный из углеродистой стали. Стальной корпус бомбы, мины или снаряда легко подвержен динамическому разрушению в результате подрыва взрывчатого вещества. На эффективность применения боеприпасов с поражающими элементами естественного дробления влияют способ подрыва, качество стали, из которой изготовлена боевая часть. Как правило, подобные боеприпасы имеют большие (75-90°) углы падения, в результате чего достигается обширная площадь поражения осколками.

Траектория полета

Ко второму типу относятся осколочные гранаты и минометные мины, корпус которых имеет специальные насечки, способствующие при подрыве взрывчатого вещества формированию осколков определенной формы и размеров. Яркий пример такого боеприпаса ручная граната Ф-1, корпус которой разделен на фрагменты определенного размера и формы. Устройство ручных осколочных гранат устроено таким образом, что при подрыве взрывчатого вещества происходит разрушение корпуса гранаты на мелкие частицы. Разлетаясь вокруг на большой скорости, осколки наносят глубокие ранения живой силе. Применение ручных осколочных гранат требует соблюдения определенных правил и требований техники безопасности, нарушение и несоблюдение которых может привести к обратному эффекту. Несоблюдение дистанции при боевом применении ручной гранты может обернуться серьезным ранением применяющей стороны.

ЗиЛ-135Л и ЛМ

Модель с индексом «Л» — вариант «Е» с исправленными ошибками. Специалисты внедрили в конструкцию торсионную подвеску всех колёс, благодаря чему галопирование устранили. Весной 1961 года начались полевые испытания новой модификации. Изначально её оснастили грузовым балластом, но затем его поменяли на макет ракетного комплекса «Луна-М». После многочисленных испытаний военное руководство страны пришло к решению, что этот грузовик соответствует всем требованиям, поэтому сделали заказ на сборку четырёх экземпляров.

Серийный выпуск автомобиля ЗиЛ-135Л планировали развернуть в Брянске, но местные специалисты отказались собирать грузовик с автоматической коробкой передач. Они требовали внедрения в устройство стандартной механики.

На замену сложного агрегата на более простой ушло несколько месяцев. Весной 1963 года появился вариант с МКПП на пять ступеней, получивший индекс «ЛМ». Коробку дополнили дистанционным приводом переключения скоростей. Специалисты заверили руководство страны, что установка механической коробки приведёт к понижению технических и эксплуатационных характеристик, а также долговечности. Мнение критиков не услышали, поэтому осенью выписали рекомендацию по запуску серийного производства «ЛМ» в Брянске.

Команду конструкторов завода имени Лихачёва решение об установке механической коробки передач не устроило. Чтобы доказать лучшее качество их варианта, они провели ряд практических испытаний на объекте газопровода в Средней Азии и Тюмени. Они показали, что модификация ЛМ уступает по проходимости и качеству первоначальной версии. Несмотря на это, решение менять не стали. Дальнейшая модернизация транспорта перешла к Брянскому автомобильному заводу. В конце 1964 года наладили серийный выпуск ЛМ. В будущем грузовики получили огромный спрос, выполняли многочисленные задачи по всему миру.

Принцип действия боеприпасов объемного взрыва

Вакуумные бомбы или боеприпасы объемного взрыва (или объемно-детонирующие боеприпасы) – это тип боеприпасов, который работает на принципе создания объемного взрыва, известного человечеству уже многие сотни лет.

Человек очень давно познакомился с явлением объемного взрыва. Подобные взрывы довольно часто случались на мукомольных производствах, где в воздухе скапливалась мельчайшая мучная пыль или на сахарных заводах. Еще большую опасность представляют собой подобные взрывы в угольных шахтах. Объемные взрывы являются одной из самых страшных опасностей, которые подстерегают шахтеров под землей. В плохо вентилируемых забоях скапливается угольная пыль и газ метан. Для инициации мощнейшего взрыва в таких условиях достаточно даже небольшой искры.

Типичным примером объемного взрыва является подрыв бытового газа в помещении.

Физический принцип действия, по которому работает вакуумная бомба, довольно прост. Обычно в нем используют взрывчатое вещество с низкой температурой кипения, которое легко переходит в газообразное состояние даже при низких температурах (например, окись ацетилена). Для создания искусственного объемного взрыва нужно просто создать облако из смеси воздуха и горючего материала и поджечь его. Но просто это только в теории — на практике этот процесс довольно сложен.

В центре боеприпаса объемного взрыва находится небольшой подрывной заряд, состоящий из обычного взрывчатого вещества (ВВ). В его функции входит распыление основного заряда, который быстро превращается в газ или аэрозоль и вступает в реакцию с кислородом воздуха. Именно последний играет роль окислителя, поэтому вакуумная бомба в несколько раз мощнее обычной, имеющей такую же массу.

Задачей подрывного заряда является равномерное распределение горючего газа или аэрозоля в пространстве. Затем в дело вступает второй заряд, который вызывает детонацию этого облака. Иногда используют несколько зарядов. Задержка между срабатываниями двух зарядов меньше одной секунды (150 мск).

Название «вакуумная бомба» не совсем точно отображает принцип действия этого оружия. Да, после подрыва подобной бомбы действительно происходит снижение давления, но ни о каком вакууме речь не идет. Вообще, боеприпасы объемного взрыва уже породили большое количество мифов.

В качестве взрывчатого вещества в объемных боеприпасах обычно используют различные жидкости (окиси этилена и пропилена, диметилацетилен, пропилнитрит), а также порошки легких металлов (чаще всего магний).

Классификация взрывчатых веществ

По своим взрывчатым свойствам ВВ делятся на:

  1. Инициирующие. Они используются для подрыва (детонации) других взрывчатых веществ. Основными отличиями ВВ этой группы является высокая чувствительность к инициирующим факторам и высокая скорость детонации. К этой группе относятся: гремучая ртуть, диазодинитрофенол, тринитрорезорцинат свинца и другие. Как правило, эти соединения используются в капсюлях-воспламенителях, запальных трубках, капсюлях-детонаторах, пиропатронах, самоликвидаторах;
  2. Бризантные взрывчатые вещества. Этот тип ВВ обладает значительным уровнем бризантности и используется в качестве основного заряда для подавляющего большинства боеприпасов. Эти мощные взрывчатые вещества отличаются по своему химическому составу (N-нитрамины, нитраты, другие нитросоединения). Иногда их используют в виде различных смесей. Бризантные взрывчатые вещества также активно используют в горном деле, при прокладке туннелей, проведении других инженерных работ;
  3. Метательные взрывчатые вещества. Являются источником энергии для метания снарядов, мин, пуль, гранат, а также для движения ракет. К этому классу взрывчатых веществ относятся пороха и различные виды ракетного топлива;
  4. Пиротехнические составы. Используются для снаряжения специальных боеприпасов. При сгорании производят специфический эффект: осветительный, сигнальный, зажигательный.

Взрывчатые вещества разделяют и по их физическому состоянию на:

  1. Жидкие. Например, нитрогликоль, нитроглицерин, этилнитрат. Существуют и разнообразные жидкостные смеси ВВ (панкластит, взрывчатые вещества Шпренгеля);
  2. Газообразные;
  3. Гелеобразные. Если растворить нитроцеллюлозу в нитроглицерине, то получится так называемый гремучий студень. Это крайне нестабильное, но довольно мощное взрывчатое гелеобразное вещество. Его любили использовать российские революционеры-террористы в конце XIX века;
  4. Суспензии. Довольно обширная группа взрывчатых веществ, которые в наши дни применяются для промышленных целей. Существуют различные виды взрывчатых суспензий, в которых ВВ либо окислитель является жидкой средой;
  5. Эмульсионные взрывчатые вещества. Весьма популярный в наши дни вид ВВ. Часто используется в строительных или шахтных работах;
  6. Твердые. Наиболее распространенная группа ВВ. К ней относятся практически все взрывчатые вещества, используемые в военном деле. Могут быть монолитными (тротил), гранулированными или порошкообразными (гексоген);
  7. Пластичные. Эта группа взрывчатых веществ обладает пластичностью. Такая взрывчатка стоит дороже обычной, поэтому ее редко применяют для снаряжения боеприпасов. Типичным представителем этой группы является пластид (или пластит). Его часто используют при проведении диверсий для подрыва конструкций. По своему составу пластид – это смесь гексогена и какого-либо пластификатора;
  8. Эластичные.

Что из себя представляет торпедная ракета «Статус-6»

Рассматриваемое устройство является продолжением развития Т-15, который тоже являлся подводным дроном, но не имел средств нападения на корабли. В данной модели появилось все необходимое для уничтожения авианесущих групп противника, а также доставки к побережьям потенциального врага ядерного заряда, который при детонации нанесет огромный ущерб прибрежной инфраструктуре.

Впервые данные о беспилотнике появились весной 2020, когда о нем официально заявил В.В. Путин. Оснащение армии России будет проводиться в рамках программы 2020-2027 годов, но наиболее вероятным сроком считается 2027 год. По предварительным данным, носителем уникального оружия станет подводная лодка «Белгород» (атомная энергоустановка, строит завод «Севмаш»), которая еще не спущена на воду.

Торпедная ракета является роботизированной малозаметной подлодкой, относится к пятому поколению и новой концепции аппаратов этого класса – переход на беспилотные системы. Фактически это миниатюрная подводная лодка, способная развить высокую скорость под водой, которая в несколько раз превышает достигнутые на сегодняшний момент показатели АПЛ (атомных подводных лодок) и торпед.

Статус-6, 3D модель

Преимущество торпеды — в неограниченном радиусе действия, но для ношения такого вооружения используются только специально переоборудованные корабли.

Разработкой системы занят ЦКБ МТ «Рубин» и СПМБ «Малахит». Сообщается, что конструкторы предприятий занимаются проектом под кодом «Цефалопод» или «Спрут».

Средств борьбы с «Посейдоном» фактически нет. В конструкции применяется стелс-технология, а сам размер минимизирует риск обнаружения. Реакторы и двигатели издают минимум шума. Глубина погружения составит по предварительным данным 1000 метров и более, то есть новая торпеда будет двигаться на глубине, с которой ее невозможно выявить современными средствами.

В чем заключается принцип действия кассетных боеприпасов?

Прежде чем кассетная бомба будет применена по назначению, ее загружают в специальный отсек на борту истребителя. Затем самолет поднимается в воздух, и после получения приказа пилот сбрасывает снаряд вниз. В свою очередь, боеприпас, выпущенный в «свободное плавание» по заданным координатам, в определенной точке выпускает парашют. Затем происходит торможение, и снаряд выравнивается в горизонтальной плоскости.

После этого боеприпас начинает поочередно избавляться от своей начинки. При этом все сбрасываемые мины и бомбы также оснащены своеобразными тормозными устройствами, что позволяет перенести их в вертикальное положение. А благодаря установленному разработчиками взрывного устройства порядку сбрасывания мин отмеченный военными участок накрывается полностью. По предварительной информации один снаряд авиабомбы способен пробить броню толщиной в 17 см.

Первые варианты

Разработка высокопроходимых военных грузовиков началась в 1955 году по указанию руководства страны. Первым вариантом стал макет ЗИС-Э134. В его основу лёг автомобиль от этого завода с индексом «151», только вместо привычной конструкции он обладал четырьмя осями. В его устройство планировали включить двигатель на 130 лошадиных сил, гидротрансформатор, гидроусилитель и систему регулировки давления в односкатных шинах.

В 1956 году собрали второй макетный образец, представляющий собой низкопрофильный военный транспорт, способный передвигаться по воде. Для последнего использовалась система водомётного движения, используемая на танках ПТ-76. ЗИС-Э134 получил металлический корпус, силовую установку на 120 лошадиных сил и два ГУРа на рулевой механизм. Образец стал первым, где упразднили эластичную подвеску. Первые испытания показали необходимость внести изменения — сделать пары не ведущих колёс разнесёнными в разные стороны.

Большим толчком в развитии военных грузовиков специального назначения стал ЗиЛ-134, внешний вид которого отдалённо напоминал очертания 135-го семейства. Из двух двигателей составили 12-цилиндровый мотор мощностью 240 лошадиных сил. Дополнением стало наличие уникальной гидромеханической подвески и независимой торсионной подвески всех колёс. Кузов из высокопрочной стали защищён от попадания воды, вмещал в себя до 4 тысяч килограмм груза или восьмерых человек. Передвижение по воде осуществлялось за счёт вращения колёс, максимальная скорость на плаву — 2 км/ч.

Сразу появилась модификация с индексом «А», которую использовали на аэродромах. С загруженным в кузове балластом транспорт мог перевозить самолёты по ВПП. Практические испытания показали большое количество недостатков в конструкции 134-й модели, поэтому работы над ней прекратили после появления машины ЗиЛ-135.

Понравилась статья? Поделиться с друзьями:
RiotClub
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector